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ABSTRACT 

Researchers are often confronted with multinomial data in insect choice studies. Common 

choice models available to researchers for analysis of multinomial data include multinomial 

logit (MNL) and multinomial probit model (MNP). MNL relies on the Independence from 

Irrelevant Alternatives (IIA) assumption which is violated when choices are correlated 

resulting in overestimating the probability of selecting correlated alternatives. The more 

flexible MNP model relaxes IIA assumption and allows modelling correlated errors. Little 

evidence exists on the performance of multinomial logit and multinomial probit models on 

insect choice data. This study investigated the performance of the two models in terms of 

predictive accuracy and goodness of fit on choice data collected in a laboratory experiment 

involving leaf miner parasitoids. Sum of squared deviations of predicted probabilities from 

observed probabilities was used to evaluate predictive accuracy. Akaike Information Criterion 

and Bayesian Information Criterion were used to evaluate goodness of fit. The findings 

indicated that MNP resulted in a higher predictive accuracy than MNL. The observed 

predictive accuracy for MNP came with a cost on the goodness of fit since MNL had a better 

fit to the data than MNP model from the Bayesian Information Criterion statistics despite 

violation of IIA assumption. There was little evidence that imposing homoskedastic 

restriction on the covariance matrix of the MNP model improved predictive accuracy and 

goodness of fit. MNL and MNP models resulted in qualitatively similar predicted 

probabilities. These findings suggest recommending use of the more analytically-tractable 

MNL in modelling insect choice data when IIA assumption is violated. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Choice studies have been widely used to understand insect, host plants and parasitoid 

interactions (Hern and Dorn, 2001; Turlings et al., 2004; Richard and Davison, 2007). Given 

several alternatives, parasitoids or insects would choose one host and not the other. Choice 

studies where insects are evaluated on how they respond to more than two stimuli lead to 

multinomial response variables. The multinomial distribution is a generalization of binomial 

distribution to cases with more than two possible ordered or unordered outcomes. Given a 

response with more than two possible outcomes and independent trials with similar category 

probabilities for each trial, the distribution of counts in the various categories follows a 

multinomial distribution (Agresti, 2007). 

There are several methods that are available for analysis of multinomial data. The most 

common form of categorical data analysis in biological sciences which give rise to frequency 

counts have been handled by constructing cross-tabulations or contingency tables and then 

using chi-square tests to examine associations between two or more categorical variables 

(Quinn and Keough, 2002). However, such an approach is not adequate for a study aimed at 

estimating the response given a change in explanatory variable since contingency tables are 

analyzed for association where neither variable is considered as a predictor or a response 

variable. The results are valid provided that fewer than 20% of cells have expected count 

below 5, and none are below 1 (Logan, 2010). Fisher’s exact test extends the chi-square test in 

studies involving small samples sizes. Further the chi-square test for association between 
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variables is a test and not a model and therefore one is not able to obtain predicted values and 

their measure of precision for instance, standard errors. 

Log-linear models for contingency tables have also been used in modeling the association 

between categorical response variables (Agresti, 2007). They are able to estimate log-odds 

and interaction effects and the residuals have to follow a poisson distribution (Logan, 2010). 

There is no distinction between response and explanatory variables in log-linear models 

(Quinn and Keogh, 2002). However, in studies with a large number of variables, log-linear 

models are limited because of the increase in possible associations and interactions of 

variables that restricts the range of good fitting models (Agresti, 2007).  

Multinomial regression has been explored extensively in social science studies involving 

transport choice studies (McFadden, 1974; Bhat, 1998; Munziaga et al., 2000) and voter 

preferences among presidential candidates from more than two political parties (Alvarez and 

Nagler, 1998; Dow and Endersby, 2004; Kropko, 2008). Multinomial regression has also been 

used in animal behavioral studies involving alligator food preferences among alternative food 

choices (Agresti, 2007). Multinomial regression has potential application in insect behavioral 

studies where choice experiments are involved since there are several advantages over other 

methods. Some of the advantages are that one is able to model the relationship of multinomial 

responses with their explanatory variables, analyze association and estimate log-odds.  

Commonly used multinomial regression models are multinomial logit (MNL) and 

multinomial probit (MNP) models Kropko (2008). The multinomial logit model relies on the 

independence from irrelevant alternatives (IIA) assumption which assumes modelled choices 

are not correlated Train (2003). Choices that do not share attributes are untenable in many 

behavioural studies leading to use of the more flexible multinomial probit model that relaxes 
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the limiting IIA assumption. This study seeks to evaluate the performance of MNL and MNP 

models for analysis of counts data arising from choice tests in insect behavioral studies. 

1.2 Problem Statement and Justification 

The use of multinomial regression is a challenge because of difficulties in implementing such 

models and interpretation of results due to the non-linear nature of the model (Long and 

Freese, 2001; Hoetker, 2007). The two commonly used multinomial regression models are 

multinomial logit and multinomial probit models. Multinomial logit model imposes the 

restrictive Independence from Irrelevant Alternatives (IIA) assumption which results in a very 

high joint probability of selecting similar or correlated alternatives. Multinomial probit model 

has a flexible error structure which relaxes IIA assumption and allows modelling correlated 

choices. However, MNP model has been found to be computationally intensive due to 

evaluation of multi-dimensional integrals. Little evidence exists on the performance of MNL 

and MNP models in insect choice data given the large data requirements of MNP model 

compared to MNL.  

The study addressed the statistical analysis challenges in multinomial count data by 

generating a step by step approach that addressed the problem of data requirements and 

implementing multinomial models, estimating odds ratios or probabilities, and interpreting 

results. The study also provided empirical evidence on the performance of multinomial logit 

and multinomial probit models on insect count data. 

1.3 Overall objective 

To evaluate the performance of multinomial logit and multinomial probit models in the 

analysis of counts from insect choice studies. 
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1.3.1 Specific objectives 

1. To evaluate the predictive accuracy of multinomial logit and multinomial probit 

models   

2. To evaluate goodness of fit of multinomial logit and multinomial probit models 

1.4 Study limitations 

The MNL and MNP model performance findings are limited to one insect choice dataset and 

generalizing the findings to different datasets may require simulation studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

In this chapter, design of statistically efficient choice experiments and random utility 

maximization framework are reviewed. Multinomial logit and multinomial probit models are 

reviewed in detail. The chapter ends with a review of studies that have compared MNL and 

MNP.  

2.1 Choice experiments 

Insect behavior has been studied by setting up choice experiments that evaluate insect 

response to different stimuli. Where insects are evaluated on how they respond to more than 

two stimuli, the data generated is multinomial in nature. Choice analysis involves explaining 

variability in a behavioural response (Hensher et al., 2005). Choice variability is a result of 

observed influences and unobserved influences.  

2.1.1 Efficient design of choice experiments 

Generating statistically efficient choice experimental designs is the least understood process 

in choice modelling as observed by Hensher et al. (2005). Design of choice experiments 

shares design principles with other experimental studies and generally involves: identifying 

alternatives; identifying choice behavior influences (attributes); determining attribute levels; 

ensuring orthogonality of attributes (statistical independence); determining main and 

interaction effects; degrees of freedom required to estimate model; treatment combinations 

required (design degrees of freedom); blocking the design; and randomizing the choice sets. 
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Dow and Endersby (2004) underscore the importance of choice models capturing the process 

that generates choice data which necessitates a clear understanding by a choice analyst of 

experimental design used. 

2.1.2 Random utility maximization framework 

Individuals choose an alternative that maximizes their utility from a choice set. Choice 

models are usually derived from the utility-maximization framework (Train, 2003; Kropko, 

2010) and resulting models are known as random utility models. This random utility 

maximization equation is of the form, 

ijijij VU ε+=                                                                      (2.1) 

where Uij represents overall utility for an alternative, Vij is the observed influences of utility 

and εij is the unobserved influences (error). 

The probability of an insect choosing alternative i over alternative j is equal to the probability 

that the utility of i being greater than (or equal to) the utility of j after evaluating all 

alternatives in a given choice set of j=1,…,i,…J alternatives (Hensher et al., 2005). This is 

given by, 

( ) );,.....,1ProbProbi jiJjjUU ji ≠=∈∀≥=                                 (2.2) 

The analyst’s equation is of the form, 

( ) ( ) ];,.....,1[ProbProb jiJjjVV jjiii ≠=∈∀+≥+= εε                            (2.3) 

Rearranging to reflect random utility maximization results in, 
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( ) ( ) ];,.....,1[ProbProb j jiJjjVV jiii ≠=∈∀−≤−= εε                            (2.4) 

Different choice models arise in relation to the assumed error structure of above εij (Dow and 

Endersby, 2004).  

2.2 Modelling multinomial data 

Several methods exist for modelling multinomial data, ‘traditional’ methods of analyzing 

multinomial data include: analysis of frequency counts using chi-square test for contingency 

tables and log-linear models for contingency tables. This review focuses on describing 

multinomial logit and multinomial probit models in detail. 

2.3 Multinomial regression 

Multinomial regression models are applied in analyzing data where the categorical response 

variable has more than two possible outcomes while the independent variables could be 

continuous, categorical variables, or both (Hosmer and Lemeshow, 2000). The categorical 

response variable may be ordered or unordered. Ordered or ordinal response variables are 

unique values that represent rank order on some dimension, but there are not enough values to 

treat the variable as continuous. Unordered or nominal response variables are those whose 

values provide classification but provide no indication of order. This study reviewed nominal 

muiltinomial regression models. 

2.3.1 Multinomial logit model  

McFadden (1974) first introduced the multinomial logit model to explain the choice of 

transportation modes of urban commuters with the random utility model. MNL continues to 

be a popular choice model because choice probabilities formula has a closed form and is 

http://login.oaresciences.org/whalecomwww.sciencedirect.com/whalecom0/science/article/pii/S0261560610000446#ref_bib19
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readily interpretable and taste variation that relates to observed attributes can be represented 

by MNL (Train, 2003).  

2.3.1.1 Model assumptions 

Multinomial logit model assumes independence of irrelevant alternatives (IIA) which implies 

that the odds of choosing an alternative i relative to an alternative j are independent of the 

characteristics of or the availability of alternatives other than i and j (McFadden, 1973). 

The IIA assumption requires that if a new alternative is available, then prior probabilities 

adjust precisely to retain original odds among all pairs of outcomes. In a hypothetical case 

where insects choose from 2 host plants A and B, the probability of choosing either plant 

under IIA PA=PB=1/2. Introducing another host plant C with similar characteristics to plant B, 

the probability of an insect choosing host plant C or B is the same PC/ PB=1. Under the MNL 

the probabilities would be PA=PB=PC=1/3 while we would expect the probabilities to be 

PA=1/2 and PB=PC=1/4. Maddala (1983) also observed that the MNL predicts a very high 

joint probability of selecting similar alternatives as observed in the above example which may 

not be appropriate in some applications. However, IIA assumption has an advantage when a 

large number of choices are considered. IIA allows a small subset of the choices to be used 

analyzed since relative probabilities in the choice subset are not affected by choices not 

included in the subset which significantly reduces computational time (Train, 2003).   

This assumption can be tested using the Hausman-McFadden test (Hausman and McFadden, 

1984). If a subset of choices is truly irrelevant, removing them from the model does not 

change the parameter estimates systematically though leading to inefficiency, the exclusion 

does not result in inconsistency. However, if remaining odds ratios are not truly independent 

from these alternatives; the parameter estimates obtained when these choices are included are 
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inconsistent (Greene, 2003). The Hausman-McFadden test has been criticized for giving 

inconsistent results when the base category is altered (Long and Freese, 2001). 

The model also assumes choice error terms are independent and identically distributed  

(Train, 2003). 

2.3.1.2 Limitations of multinomial logit model 

Imposition of the independence of irrelevant alternatives (IIA) is restrictive for behavioral 

choice models since IIA limits the application of multinomial logit regression to choices that 

are correlated or share important qualities. MNL has a restricted substitution pattern due to 

IIA assumption which limits its application in studies interested in investigating the effect of 

dropping or adding some choices. Lastly, MNL is not able to represent random taste variation, 

and is also not applicable in analysis of panel choice data since error terms exhibit temporal 

correlation (Train, 2003). 

2.3.2 Multinomial probit model 

The model was proposed by Aitchison and Bennet (1970) and has a significant advantage 

over the multinomial logit model since MNP allows the modeling of correlated choices 

through the relaxing the IIA restriction. The multinomial probit model introduces additional 

parameters to the covariance matrix of the errors which increases flexibility of the error 

structure which allows any pattern of substitution, handles random taste variation, and can be 

applied in analysis of panel choice data (Train, 2003).  

2.3.2.1 Model assumptions 

The model assumes that the choice error terms have a multivariate normal distribution 

(Alvarez and Nagler, 1994; Long, 1997).  
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2.3.2.2 Limitations of multinomial probit model 

MNP model’s increased flexibility involves the evaluation of high dimensional multivariate 

normal integrals for solving probabilities which increases time before reaching convergence 

and becomes challenging especially if probability is close to zero or one (Cameron and 

Trivedi, 2005). This computational challenge has been slightly reduced with the development 

of new algorithms, advances in computing power and Bayesian estimation methods (Train, 

2003). Greene (2003) observed the need of imposing additional restrictions on the error 

covariance matrix of MNP models estimated using maximum simulated likelihood to enhance 

convergence. 

An alternative estimation procedure is method of simulated moments (MSM) though 

Cameron and Trivedi (2005) note an efficiency loss for MSM where low and large simulator 

draws are used which reduces computation. Bhat (2011) proposed the simpler maximum 

approximate composite marginal likelihood (MACML) estimation approach which has a 

computational time efficiency advantage relative to MSL approach.  Bhat (1998) proposes 

imposing restrictions on the covariance matrix to reduce the number of parameters estimated. 

MNP model has been found to require a very large sample sizes to obtain reliable and precise 

estimates (Alvarez and Nagler, 1994; Dow and Endersby, 2004). The distribution of error 

terms has also been observed not to follow a normal distribution in some cases (Train, 2003).  

2.4 Comparative studies on MNL and MNP models  

Studies that compare the two models have mostly been in the field of political science 

(Alvarez and Nagler, 1994; Alvarez and Nagler, 1998; Quinn et al., 1999; Dow and Endersby, 

2004; Kropko, 2008; Kropko, 2010) and transport studies (Munziaga et al., 2000). MNL and 

MNP models have been evaluated on the basis of precision of estimates, goodness of fit, time 
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taken before convergence, accuracy of predicted probabilities, rate of correct signs for 

coefficients, and implication of violating IIA assumption. 

Their findings seem to contradict each other with regards to the performance of MNL and 

MNP models. Alvarez and Nagler (1994) contended with the finite sample behavior of both 

MNL and MNP models and found that in samples of less than 1000, both MNL and MNP 

accurately estimated parameters in the systematic component. However, the random 

component was weakly identified for MNP due to large sample size required to estimated 

covariance matrix parameters. Alvarez and Nagler (1998) found that MNP performed better 

than MNL by predicting more accurate probabilities after dropping or adding an alternative. 

Quinn et al. (1999) give a balanced assessment where MNP performs better on Dutch voter 

data while there is no difference between MNL and MNP on the British voter data. Their 

study compares the two models goodness of fit using the Bayes factor methodological 

approach.  

MNL has been found to be more robust than MNP even in cases where IIA assumption has 

been violated (Dow and Endersby, 2004; Kropko, 2008; Kropko, 2010). However, Dow and 

Endersby (2004) underscore the importance of choice models capturing the process which 

generates the observed data while resulting in accurate estimates. MNL and MNP were 

compared on simulated transport data based on heteroskedasticity between options and 

between observations by Munziaga et al. (2000). They found that the MNL was fairly robust 

to homoskedasticity violations but justified the use of MNP in cases where heteroskedasticity 

between options was present. Munziaga et al. (2000) also note that the MNP requires very 

large sample sizes. Jones et al. (2010) compare MNL and MNP using student success in 

higher education and find no significant differences in conclusions arrived at by both models. 
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They however note that the MNP is susceptible to convergence problems unlike the MNL 

model.  

Insect choice studies involving multinomial data have applied log-linear models in the 

analysis (Turlings et al., 2004; Richard and Davison, 2007). Hern and Dorn (2001)  mention 

multinomial logit models in analyzing insect response to different apple volatiles but instead 

apply log-linear and binomial models to their data. The binomial model was used after 

dropping one of the 3 choices in the study. They recommend further research on choice 

models in insect behavioural studies. Turlings et al. (2004) studied the application of log-

linear models to wasp choice of volatiles in a six-arm olfactometer study. Richard and 

Davison (2007) extended the log-linear model proposed by Turlings et al. (2004) to insect 

choice studies with high overdispersion by proposing an inhomogeneous Markov chain model 

which explains overdispersion in analysis of count insect data.  

This study seeks to provide more empirical evidence on the performance of MNL and MNP 

models by applying them on insect choice data while extending choice models research in 

insect behavioural studies. 
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CHAPTER THREE 

METHODOLOGY 

Introduction 

This chapter describes the data used in the study and how the data was managed. Summary 

statistics, exploratory plots, MNL and MNP models are also described. The chapter ends by 

detailing predictive accuracy and goodness of fit methods used in the analysis.  

3.1 Data Description 

Secondary data used in this study came from a laboratory experiment conducted by 

Musundire et al. (2012) where parasitoids Diglyphus isaea (Walker) (Hymenoptera: 

Eulophidae) were allowed to either parasitise or host feed on larva of leaf miner flies reared 

on different leaf miner host plants. The study involved 3 leaf miner fly species: Liriomyza 

huidobrensis (Blanchard), Liriomyza sativae (Blanchard), and Liriomyza trifolii (Burgess) 

(Diptera: Agromyzidae) and 4 host plants considered to be of economic importance: 

Phaseolus vulgaris, Pisum sativum, Solanum lycospersicum and Vicia faba.  

The aim of the study was to investigate whether leaf miner species influenced parasitoids 

choice of either host feeding or parasitizing leaf miner larva. 

3.1.1 Experimental design 

Four potted leaf miner host plants P. vulgaris, P. sativum, S. lycospersicum and V. faba were 

each infested with live late second to third instar larvae of Liriomyza species and placed in 
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ventilated Perspex cages (50 × 50 × 45 cm).  P. vulgaris, P. sativum, S. lycospersicum plants 

used in the experiment were each two weeks old while was S. lycospersicum 5 weeks old. 

3 generations before conducting the experiment, the 3 Liriomyza species were reared on each 

of the 4 host plants,to avoid bias resulting from rearing leaf miner on only one host plant. The 

Liriomyza were reared at a temperature of 27 ± 0.60C, relative humidity ranging between 27-

35% and a 12L: 12D photoperiod. 

50 male and female (sex ratio 1:1) adult Liriomyza aged 4 days were released to infest 

16potted plants of each of the 4 host plant species placed in ventilated cages. The adult 

Liriomyza were given a 4 hour oviposition period after which infested host plants were 

transferred to a similar cage without adult Liriomyza where leaf miner larvae were allowed to 

develop until late second instar and third instar larval stages. 

45 pre-mated D. isaea were then released per cage for 48 hours on leaf miner larvae infested 

host plants where they were allowed to mate and given a preoviposition period of 12 hours. 

Larvae were recorded as host fed once they became flaccid with black spots on their body as a 

result of stings of parasitoid females and parasitized when they were found with immatures of 

leaf miner flies. The experiment was replicated four times for each host plant and Liriomyza 

species with each of 4 cages constituting a replicate.  

The response variable was number of parasitoids (counts) that parasitized or host fed leaf 

miner larva on a given host plant and explanatory variable was leaf miner species. 
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3.1.2 Data management 

Before fitting the MNL model, data was organized in wide format with one row providing 

data for each choice situation for an individual parasitoid (Appendix 1). 

For the MNP the data was organized in long format with one row for each alternative made by 

an individual parasitoid and since there were 3 host plant alternatives, the dataset had 3 rows 

for each choice made by parasitoids (Appendix 2). 

Due to the small numbers of leaf miner larvae in P. sativum attributed to difficulties in rearing 

L.sativae and L. trifolii larva in P. sativum, P. sativum was excluded in the analysis both for 

host feeding and parasitism to ensure convergence (Agresti, 2007; Long and Freese, 2001).  

Agresti (2007) observed that empty cells as a result of zero counts result in infinite estimates 

and flat regions in the log likelihood leading to convergence difficulties.  

3.2 Data Analysis 

3.2.1 Summary statistics 

The data was summarized using a contingency table and association tested between host 

plants and leaf miner species using chi square test for contingency tables. Fishers’ exact test 

was used to analyze the association where fewer than 20% of cells in the contingency table 

had expected counts below 5 and none were below 1. 

Two exploratory box plots were also used to show visualize patterns and check for outliers.  

i. Box plot of total parasitoids that chose different host plants 

ii. Box plot of parasitoids that chose different host plants including leaf miner species 
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3.2.2 Models 

Nominal multinomial logit and multinomial probit models were fitted on the data.  

3.2.2.1 Multinomial logit model 

Two MNL models were fitted on the data one for host feeding and the other for parasitism 

cases.  

The MNL model log odds equation was of the form, 

( ) j10j XββPlogit ε++=
 

where, 

Pj = probability of choosing the jth host plant  

β0= constant term 

β1= leaf miner species parameter estimate 

X= leaf miner species  

εj = error terms 

j = 1,…,3 host plant alternatives 

Counts of parasitoids that host fed and parasitized leaf miner larvae were used as frequency 

weights for each host plant choice. 

MNL models were fitted using default Stata settings and parameters estimated via maximum 

likelihood (MLE) implemented by the Newton-Raphson algorithm.  
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Testing IIA assumption 

Hausman-McFadden test was used in testing IIA assumption for MNL model (Hausman and 

McFadden, 1984).  

3.2.2.2 Multinomial probit model 

Two MNP models estimated via maximum simulated likelihood (MSL) were fitted on the 

data for host feeding and parasitism cases. The simulation was implemented by the Geweke-

Hajivassilou-Keane (GHK) simulator and optimization was via the Stata default Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. Hajivassiliou et al. (1996) compared 11 

different simulation methods and came to the conclusion that the Geweke-Hajivassiliou-

Keane (GHK) simulator performed better than the other simulation methods for MNP models. 

The response variable was also host plant while explanatory case-specific (does not vary with 

choices) variable was leaf miner fly species. 

j10j
1 Xββ)P( ε++=Φ−  

where, 

Pj = probability of choosing the jth host plant  

β0= constant term 

β1 = leaf miner species parameter estimate 

X = leaf miner species  

εj = error terms 
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j = 1,…,3 host plant alternatives 

Counts of parasitoids that host fed and parasitized leaf miner larvae were used as frequency 

weights for each host plant choice. 

Two restrictions were imposed on the variance error structure of the MNP models: 

i. Heteroskedastic variance error structure (default Stata setting) which accommodated 

correlated error terms which had different variance for each choice error. 

ii. Homoskedastic variance error structure which forced the diagonal elements in the 

variance-covariance matrix to be 1. This restriction accommodated correlated errors 

only. 

Both models allowed an unstructured correlation error structure which relaxed the IIA 

assumption.  

Base Categories 

P. vulgaris was used as the Stata default base category for host feeding case since it had the 

highest frequency counts while V. faba was used for parasitism case respectively. 

3.3 Predictive accuracy evaluation 

The predictive accuracy of predicted probabilities from MNL, homoskedastic MNP and 

unrestricted MNP models was evaluated using the sum of squared deviations (Maddala, 

1983). The observed choice probabilities were generated in 0 and 1 binary format for the three 

host plants. When a parasitoid chose a host plant the observed probability was 1 and 0 

otherwise. The three models were fitted and their predicted probabilities generated. The 



 

19 
 

predicted probabilities were then subtracted from observed probabilities, the deviations 

squared and the squared deviations summed to obtain the sum of squared deviations from 

predicted probabilities statistic (Appendix 4).  

This approach has an advantage of being more robust by considering all probabilities 

compared to percent correctly predicted method which does not distinguish between predicted 

probabilities of 0.51 and 0.99.  

Smaller sum of squared deviations indicate a higher predictive accuracy for the model. 

3.4 Goodness of fit evaluation 

Goodness of fit for the models was evaluated using Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). Both AIC and BIC select models that minimize the 

distance between fitted values and expected true values (Agresti, 2007). Lower AIC and BIC 

statistics indicate better fit. 

3.4.1 Akaike Information Criterion (AIC) 

The test was introduced by Akaike (1973) for the purpose of selecting an optimal model from 

within a set of proposed models. AIC measures the relative goodness of fit of competing 

statistical models taking into account the number of fitted parameters using the Kullback-

Leibler information or distance (Burnham and Anderson, 2002).  

The AIC selects the model that minimizes the distance between fitted values and expected 

true values (Agresti, 2007) and is of the form, 

AIC has the form, 

kL 2   log2AIC +−=                                                             (3.1) 
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However, the AIC has a tendency of selecting models with too many parameters in cases 

where the sample size is large.  

3.4.2 Bayesian Information Criterion (BIC) 

Bayesian Information Criterion was proposed by Schwarz (1978) who extended the AIC, 

arguing from a bayesian viewpoint. BIC has an advantage over AIC since BIC selects the 

correct model with a probability of 1 as the sample size increases or decreases as was 

demonstrated by Raftery (1986) by adding a constant to the likelihood function.  

BIC has the form, 

( )nkL loglog2BIC +−=                                                        (3.2) 

Where n is the sample size, L is the maximized likelihood and k is the number of regressors 

including the intercept. 

BIC was used since it penalizes model complexity more than AIC (Raftery, 1986; Logan, 

2010). 

3.4.3 Ease of convergence 

The ease of convergence was evaluated by counting the number of iterations before 

convergence of log-likelihood and simulated log-likelihood functions for MNL and MNP 

models respectively. Hensher et al. (2005) noted that number of iterations can be used to 

identify convergence difficulties with models whose iterations exceed 150 having high 

chances of not converging and when the models converge, the estimates are usually poor and 

of little use.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction 

In this chapter, summary statistics and exploratory plots are presented first. Predictive 

accuracy and goodness of fit results for MNL and MNP models are also presented. The 

chapter ends with a detailed discussion of the results. 

4.0 RESULTS 

4.1 Summary statistics 

Table 1: Contingency table showing D. isaea counts for host feeding case 

                         Leaf miner species 
 L. huidobrensis L. sativae L. trifolii Total 
Host plant     
P. vulgaris          28 106 7 141 
P. sativum 6 0 4 10 
S. lycospersicum 3 16 88 107 
V. faba 24 59 14 97 
     
Total 61 181 113 355 

 

Parasitoids prefer host feeding leaf miner larvae on P. vulgaris as a host plant and least prefer 

those on P. sativum (Table 1). Presence of sparse data is evident from counts of parasitoids 

that chose to host feed P. sativum. where only 0 and 4 parasitoids chose P. sativum infested 

with L. sativae and L. trifolii leaf miner larvae respectively. Using the chi-square for testing 

association between host plant and leaf miner species would not be appropriate since the test 

assumptions are not met. Fisher’s exact test was used instead and revealed a significant 
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association between parasitoid choice of host plants and leaf miner species (χ2= 204.56, df = 

6, P <0.0001). These results explain overall association but do not explain which host plant is 

significantly associated to specific leaf miner species thus the chi-square test is limited in 

analysis of multinomial data. 

The variable P. sativum which had sparse data was excluded in the analysis to ensure 

convergence was attained (Table 2). 

Table 2: Contingency table of parasitoid counts and percentages for host feeding case 
(without P. sativum) 

                Leaf miner species 
 L. huidobrensis L. sativae L. trifolii Total 
Host plant     
P. vulgaris          28 106 7 141  
 50.91% 58.56% 6.42% 40.87%  
     
S. lycospersicum 3 16 88 107  
 5.45% 8.84% 80.73% 31.01%  
     
V. faba 24 59 14 97  
 43.64% 32.60% 12.84% 28.12%  
     
Total 55 181 109 345  
 100.00% 100.00% 100.00% 100.00%  
 

The total percentage of parasitoids that chose to host feed leaf miner larvae were highest in P. 

vulgaris (40.87%) and lowest in V. faba (28.12%). L. sativae leaf miner larva had the highest 

counts (181) of host fed larvae while L. huidobrensis had the lowest count (55). 

There was a highly significant association between host plant and leaf miner larvae species 

for host feeding by D. isaea parasitoids from the chi-square test (χ2= 189.08, df = 4, 

P<0.0001). 
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Table 3: Contingency table of parasitoid counts for parasitism case 

                         Leaf miner species 
 L. huidobrensis L. sativae L. trifolii Total 
Host plant     
P. vulgaris          100 269 33 402 
P. sativum 57 0 9 66 
S. lycospersicum 53 64 139 256 
V. faba 250 132 89 471 
     
Total 460 465 270 1,195 
The variable P. sativum was excluded from the analysis to ensure convergence since under L. 

sativae 0 counts were recorded as observed in Table 3. From Fisher’s exact test, there was a 

significant association between host plant and leaf miner species under parasitism (χ2= 

395.40, df = 6, P <0.0001). 

Table 4: Contingency table of parasitoid counts and percentages for parasitism case 
(without P. sativum) 

                Leaf miner species 
 L. huidobrensis L. sativae L. trifolii Total 
Host plant     
P. vulgaris          100 269 33 402  
 24.81% 57.85% 12.64% 35.61%  
     
S. lycospersicum 53 64 139 256  
 13.15% 13.76% 53.26% 22.67%  
     
V. faba 250 132 89 471  
 62.03% 28.39% 34.10% 41.72%  
     
Total 403 465 261 1,129  
 100.00% 100.00% 100.00% 100.00% 
 

The total percentage of parasitoids that chose to parasitize larva was the highest in V. faba 

(41.72%) and lowest in S. lycospersicum. L. sativae leaf miner larva had the highest counts 

(465) of parasitized larvae while L. trifolii had the lowest counts (261). 
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There was a highly significant association between host plant and leaf miner species for 

parasitism (χ2= 319.82, df = 4, P <0.0001). The significance results reveal overall association 

but do not reveal which host plant is significantly associated to specific leaf miner species 

thus the chi-square test is limited in analysis of multinomial data. 

Overall, the total counts of parasitoids that chose to parasitize leaf miner larvae was higher 

(1,129) than the total number that chose to host feed (345) as observed in Tables 1 and 3 

respectively. This indicated that D. isaea parasitoids parasitized 3 times as many leaf miner 

larvae as they host fed. 

Box plots for exploratory data analysis 

   

Figure 1: Box plot of total parasitoids that chose different host plants under host feeding and 
parasitism cases 
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Parasitoid choice of host plants displayed higher variability under parasitism case than for 

host feeding. Choice of P. sativum displayed very low variability under host feeding and 

highly skewed distribution under parasitism. An extreme outlier was observed in V. faba 

under parasitism prompting further examination (Figure 2).  

  

Figure 2: Box plot of parasitoids that chose different host plants including leaf miner species 
under host feeding and parasitism cases 

 

The parasitoids choice of V. faba with L. huidobrensis leaf miner larvae was observed to have 

the highest variability for parasitism case which explained the extreme outlier observed in 

Figure 1.  
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4.2 Predictive accuracy 

Table 5: Predictive accuracy for host feeding and parasitism case - sum of squared 
deviations from predicted probabilities 

 Host feeding Parasitism 

 MNL MNP 

Unrestricted 

MNP 

Homoskedastic 

MNL MNP 

Unrestricted 

MNP 

Homoskedastic 

∑ (deviation) 2 34.84 30.28 30.37 30.21 26.04 25.85 

 

Unrestricted MNP model had the highest predictive accuracy for host feeding case while 

homoskedastic MNP had the highest predictive accuracy for parasitism case (Table 5). 

However, marginal differences in predictive accuracy were observed for MNP models with 

unrestricted and homoskedastic error structures for both parasitism and host feeding cases. 

MNL had the lowest predictive accuracy for both parasitism and host feeding cases 

respectively. The lower the sum of squared deviation, the higher the predictive accuracy for 

the respective choice model. 

4.2.1 Predicted probabilities 

Table 6: Host feeding parasitoid choice predicted probabilities for MNL, unrestricted 
MNP and homoskedastic MNP 

                      MNL MNP 
Unrestricted 

MNP 
Homoskedastic 

 L.  

huido  

L. 

sativae 

L. 

trifolii 

L. 

huido  

L. 

sativae 

L. 

trifolii 

L. 

huido  

L. 

sativae 

L. 

trifolii 

P. vulgaris  0.620 0.518 0.120 0.526 0.556 0.080 0.589 0.520 0.113 
S. lycospersicum  0.005 0.119 0.782 0.002 0.143 0.755 0.002 0.142 0.764 
V. faba  0.375 0.363 0.098 0.472 0.301 0.165 0.409 0.337 0.123 
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Table 7: Parasitism parasitoid choice predicted probabilities for MNL, unrestricted 
MNP and homoskedastic MNP 

                       MNL MNP 
Unrestricted 

MNP 
Homoskedastic 

 L.  

huido  

L. 

sativae 

L. 

trifolii 

L. 

huido  

L.  

sativae 

L. 

trifolii 

L. 

huido  

L. 

sativae 

L. 

trifolii 

P. vulgaris  0.365 0.376 0.307 0.374 0.378 0.263 0.366 0.374 0.302 
S. lycospersicum  0.084 0.220 0.459 0.072 0.226 0.484 0.082 0.227 0.456 
V. faba  0.551 0.404 0.234 0.554 0.395 0.252 0.552 0.400 0.242 

 

The MNL, unrestricted MNP and homoskedastic MNP models reported qualitatively similar 

predicted probabilities for parasitoid choice of different host plants for host feeding and 

parasitism cases as observed in Tables 6 and 7.  

Selected interpretation of estimated coefficients (Appendix 3). 

Hausman-McFadden test of IIA assumption 

H0: Odds (Outcome-J versus Outcome-K) are independent of other alternatives. 

Phaseolus vulgaris violated the IIA assumption (χ2= 28.11, df = 2, P < 0.0001) under MNL 

for host feeding. Parasitoid choice of P. vulgaris host plants was correlated to V. faba and S. 

lycospersicum. 

Vicia faba (χ2= 8.922, df = 2, P = 0.012) violated the IIA assumption under MNL for 

parasitism. Parasitoid choice of V. faba host plants was correlated to P. vulgaris and S. 

lycospersicum. 
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4.3 Goodness of fit  

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for the MNL 

and MNP models were used to compare goodness of fit in the table below. The number of 

iterations was also presented to give an indication of convergence ease. 

Table 8: Multinomial logit and multinomial probit model goodness of fit statistics 

  Host feeding  Parasitism 
 MNL MNP MNP MNL MNP MNP 
  Unrestricted Homoskedastic  Unrestricted Homoskedastic 
AIC 578.797 581.970 586.155 2282.433 2275.843 2284.915 
       
BIC 594.171 606.680 610.866 2302.55 2312.61 2315.553 
       
Iterations  5 25 20 4 25 20 
       

 

From the low AIC and BIC values, it is evident that the MNL model had a better fit than 

unrestricted MNP and homoskedastic MNP respectively for host feeding case. Unrestricted 

MNP had a marginally better than homoskedastic MNP for host feeding case an indication 

that parasitoid choice of host plants was heteroskedastic. For the parasitism case, unrestricted 

MNP has a marginally better fit than MNL and homoskedastic MNP models respectively 

from the AIC statistic. However, BIC penalized both unrestricted MNP and homoskedastic 

MNP because of additional estimated parameters in the error covariance matrix resulting in a 

better fit for MNL model. 

Imposing a homoskedastic error structure increased the ease of convergence for MNP model. 

MNL converged fastest while unrestricted MNP took longest to converge as observed in the 

number of log likelihood iterations. 
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4.4 DISCUSSION  

4.4.1 Summary statistics 

The chi-square test for contingency tables explains that there is a highly significant 

association (P <0.0001) between host plants and leaf miner flies larvae for both parasitism 

and host feeding cases respectively (Tables 1 and 3). However, because 44% of the cell sizes 

had counts less than 5, the Fisher’s exact test was used to test for association between host 

plants and leaf miner species (Table 1 and 3) and also gave highly significant association 

results. From the results of the chi-square and Fisher’s exact tests, we are not able to 

determine which species of leaf miner flies contribute most to the strong association. This 

breaking down of the chi-square test was also observed by Logan (2010).  

The chi square test has potential use in insect choice studies during data exploration since the 

test gives an indication of patterns in the data as observed in Stout et al. (2010) who used the 

test in testing association between female cricket behavior and different sound frequencies 

made by male crickets. Contingency tables play a crucial role when fitting multinomial 

models on sparse data since they identify empty or small cells that would result in 

convergence difficulties due to model instability as was observed by Long and Freese (2001). 

4.4.2 Predictive accuracy 

MNP model has a higher predictive accuracy than MNL (Table 5). This finding can be 

explained by the presence of slight correlation in choices that is observed in host feeding and 

parasitism from Hausman--McFadden test. Correlation presence enables the MNP to 

consistently predict accurate estimates than MNL. This finding is supported by Kropko (2010) 
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who also observed that MNP has higher predictive accuracy especially when error terms 

follow a multivariate normal distribution.  

Marginal differences in predictive accuracy are observed in MNP models with unrestricted 

and homoskedastic error structures for both host feeding and parasitism cases (Table 5). The 

heteroskedastic restriction on the covariance matrix seems to capture choice behavior 

marginally accurately than a homoskedastic restriction for host feeding case while the reverse 

is true for parasitism case. This finding agrees with Train (2003) who notes that covariance 

structure in MNP models depends on the specific situation being modeled. There is however 

little evidence from this study that imposing homoskedastic restrictions on the covariance 

matrix of the MNP model improves predictive accuracy. The consequence of forcing the 

diagonal elements to be 1 as is the case of homoskedastic restriction on the estimates may 

require further research by examining hessian condition to determine whether estimates 

converge at their global optimum. Researchers using MNP model should consider exploring 

different covariance matrix structures in an attempt to determine the most appropriate 

substitution pattern for their data. 

The qualitatively similar predicted probabilities observed for both MNL and MNP models 

(Table 6 and 7) agree with Dow and Endersby (2004) who found that MNL and MNP models 

resulted in almost similar probabilities even in cases where choice correlation was present. 

Kropko (2010) also found little differences in predicted probabilities from MNL and MNP 

models compared under different correlation error structures.  

Comparing parameter estimates from MNL and MNP without accounting for differences in 

scaling between the two models may lead to overestimating and underestimating effects. 
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MNL reports coefficients that are about 1.6 times larger than for MNP coefficients (Maddala, 

1983). However, the significance of estimates is similar despite differences in scaling by the 

two models as was noted by Train (2003) who also found that the choice with the highest 

utility does not change no matter the scaling used. Parameter estimates from MNL and MNP 

should be re-scaled to avoid underestimating or overestimating effects when comparing the 

models. 

4.4.3 Goodness of Fit 

Multinomial logit fits the data better than MNP from the lower BIC statistic values for MNL 

model for both host feeding and parasitism cases (Table 9). MNL is observed to have a better 

fit to the data than both variations of MNP despite the presence of slight correlation as 

evidenced by IIA assumption violation. This finding agrees with Dow and Endersby (2004) 

who observes that IIA assumption being more of a logical decision making property and less 

of a statistical property is not particularly restrictive for most applications. 

The AIC statistic for the parasitism case indicates that the unrestricted MNP has a marginally 

better fit than MNL and homoskedastic MNP models respectively. BIC penalizes the 

unrestricted MNP because of additional parameters estimated in the covariance matrix while 

the more parsimonious MNL is observed to fit the data better. In addition to being more 

parsimonious, MNL model’s better fit can also be attributed to the tractable nature of MNL 

likelihood estimation compared to MNP that relies on simulation which may lose efficiency 

leading to convergence that is not at the global optimum. MNL model’s simpler optimization 

leads to convergence at higher log likelihood and consequently results in a smaller AIC and 

BIC statistics which agrees with the observations of Trivedi (2009).  
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Imposing homoskedastic restriction on MNP model does not seem to improve fit for 

homoskedastic MNP as observed from both AIC and BIC statistics (Table 9) for parasitism 

and host feeding case. Though the MNL seems to fit the data better, the unrestricted MNP has 

a higher predictive accuracy. This observation underscores the need for researchers to 

scrutinize their estimates reliability in addition to measures of fit and agrees with Train (2003) 

who warns against choosing a competing model based only on fit statistics.  

Restrictions on MNP covariance matrix reduce computational burden. The number of 

iterations before convergence are lower for homoskedastic MNP than unrestricted MNP for 

both host feeding and parasitism cases (Table 9). The reduced computational burden for 

homoskedastic MNP can be attributed to a reduction in the number of parameters estimated in 

the covariance matrix. This finding agrees with Greene (2003) who notes that imposing 

restrictions in the covariance matrix of MNP models enhances convergence for more than 3 

choices. The finding also adds on the need of imposing restrictions even for 3 choices. 

Researchers choosing choice models for slightly correlated choices may benefit from MNL 

model’s better fit over MNP. However, examining estimate accuracy and reliability should 

also guide the choice of model. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

Introduction 

This chapter presents conclusions based on the study objectives followed by 

recommendations and future directions. 

5.1 Conclusion  

Multinomial probit had a higher predictive accuracy than multinomial logit model. Trading 

off simplicity and goodness of fit seems to result in a higher predictive accuracy for MNP 

model. There is evidence that both MNL and MNP models result in qualitatively similar 

predicted probabilities.  

MNL had a better fit to the data than MNP despite violation of the IIA assumption. There was 

little evidence that imposing restrictions on the MNP covariance matrix improved predictive 

accuracy and goodness of fit though the homoskedastic restriction reduced computational 

burden.  

5.2 Recommendations 

The study findings suggest recommending use of the simpler and better fitting MNL in 

modelling insect choice data when IIA assumption is violated. However, more simulation 

studies should be conducted since MNL and MNP performance could vary under different 

scenarios. Future simulation studies should also evaluate the hessian condition of MNP 

estimates after imposing restrictions on the covariance matrix. 



 

34 
 

REFERENCES 

Agresti, A. (2007). An introduction to categorical data analysis, 2nd edn. New York: Wiley.  

Aitchison, J., and Bennett, J. A. (1970). Polychotomous quantal response by maximum 

 indicant, Biometrika 57(2): 253-262.  

Akaike, H. (1973). Information theory and an extension of the maximum likelihood

 principle. In International Symposium on Information Theory, 2nd, Tsahkadsor,

 Armenian SSR (pp. 267-281). 

Alvarez, R. M. and Nagler, J. (1994). Correlated Disturbances in Discrete Choice Models: A

 Comparison of Multinomial Probit Models and Logit Models. Working Papers 914,

 California Institute of Technology, Division of the Humanities and Social Sciences. 

Alvarez, R. M. and Nagler, J. (1998). When Politics and Models Collide: Estimating Models

 of Multiparty Elections. American Journal of Political Science, 42:55-96. 

Bhat, C. R. (1998). Accommodating flexible substitution patterns in multi-dimensional

 choice modeling: formulation and application to travel mode and departure time

 choice. Transportation Research Part B: Methodological, 32(7): 455-466.  

Bhat, C. R. (2011). The maximum approximate composite marginal likelihood (MACML)

 estimation of multinomial probit-based unordered response choice

 models. Transportation Research Part B: Methodological, 45: 923-939. 

Burnham, K. P., and Anderson, D. (2002). Model selection and Multi Model Inference, 2nd

 edn. Fort Collins: Springer Inc.  



 

35 
 

Cameron, A. C. and Trivedi, P. K. (2005). Microeconometrics: Methods and applications,

 New York: Cambridge University Press.  

Dow, J. K. and Endersby, J. W. (2004). Multinomial Probit and Multinomial Logit: A

 Comparison of Choice Models for Voting Research. Electoral Studies, 23(1): 107-

 122. 

Greene, W. (2003). Econometric Analysis, 5th ed. New Jersey: Prentice Hall. 

Hajivassiliou, V., McFadden, D. and P. Ruud (1996). Simulation of multivariate normal

 rectangle probabilities and their derivatives: Theoretical and computational results,

 Journal of Econometrics, 72: 85–134.  

Hausman, J. and McFadden, D. (1984). Specification Tests for the Multinomial Logit

 Model, Econometrica, 52(5): 1219-1240.  

Hensher, D. A., Rose, J. and Greene, W. (2005). Applied Choice Analysis: A Primer,

 Cambridge: Cambridge University Press. 

Hern, A. and Dorn, S. (2001) Statistical modeling of insect behavioral responses in relation

 to the chemical composition of test extracts. Physiol. Entomol, 26: 381–390. 

Hoetker, G. (2007). The use of probit and logit models in strategic management research: 

 Critical issues. Strategic Management Journal, 28: 331-341. 

Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic Regression, 2nd edn. New York:

 Wiley.  



 

36 
 

Jones, W. D., Radcliffe, P. M., Huesman, R. L., and Kellogg, J. P. (2010). Redefining

 student  success: Applying different multinomial regression techniques for the study

 of student graduation across institutions of higher education. Research in Higher

 Education, 51(2): 154-174. 

Kropko, J. (2008). Choosing between Multinomial Logit and Multinomial Probit Models for

 Analysis of Unordered Choice Data. Paper Presented at the Annual Meeting of the

 MPSA Annual National Conference, Palmer House Hotel, Hilton, Chicago, IL, USA. 

Kropko, J. (2010). A Comparison of Three Discrete Choice Estimators. Unpublished paper

 University of North Carolina. 

Logan, M. (2010). Biostatistical Design and Analysis Using R: A Practical Guide. Chichester: 

John Wiley & Sons.  

Long, S. (1997). Regression Models for Categorical and Limited Dependent Variables.

 Thousand Oaks, CA: Sage Publications.  

Long, S. and Freese, J. (2001). Regression Models for Categorical and Limited Dependent

 Variables Using Stata.  College Station, Texas: Stata Press.  

Maddala, G. S. (1983). Limited-dependent and Qualitative Variables in Econometrics.

 Cambridge: Cambridge University Press. 

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. Frontiers in

 Econometrics., New York: Academic Press. 

McFadden, D. (1974). The measurement of urban travel demand. Journal of Public

 Economics, 3: 303–328.  



 

37 
 

Munziaga, M. A., Heydecker, B. G., Ortuzar, J. D. D. (2000). Representation of

 heteroskedasticity in discrete choice models. Transport Research Part B:

 Methodological, 34(3): 219-240. 

Musundire, R., Chabi-Olaye, A., Salifu, D., and Krüger, K. (2012) Host plant-related

 parasitism and host feeding activities of Diglyphus isaea (Hymenoptera: Eulophidae)

 on Liriomyza huidobrensis , Liriomyza sativae , and Liriomyza trifolii (Diptera:

 Agromyzidae). Journal of Economic Entomology, 105(1):161-168. 

Quinn, G. P. and Keough, M. J. (2002). Experimental design and data analysis for

 biologists. New York: Cambridge University Press. 

Quinn, K.M., Martin, A.D., and Whitford, A.B. (1999). Voter choice in multi-party

 democracies: a test of competing theories and models. American Journal of Political

 Science, 43: 1231– 1247. 

Raftery, M. A. E. (1986b). A note on Bayes factors for log-linear contingency table models

 with vague prior information. Journal of the Royal Statistical Society, Series B, 48:

 249-250.  

Richard, I. and Davison, A. C. (2007). Statistical inference for olfactometer data. Journal of

 the Royal Statistical Society: Series C (Applied Statistics), 56(4): 479-492. 

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6 (2):

 461–464. 

Stout, J., Navia, B., Jeffery, J., Samuel, L., Hartwig, L., Bultin, A., Chung, M., Wilson, J.,

 Dashner, E., and Atkins, G., (2010). Plasticity of the phonotactic selectiveness of four 



 

38 
 

species of chirping crickets (Gryllidae): Implications for call recognition. Physiol. Entomol., 

35: 99-116. 

Train, K. (2003). Discrete Choice Methods with Simulation, Cambridge: Cambridge

 University Press. 

Trivedi, P. K. (2009). Microeconometrics using Stata. Texas: Stata Press. 

Turlings, T. C. J., Davison, A. C. and Tamo, C. (2004). A six-arm olfactometer permitting

 simultaneous observation of insect attraction and odour trapping. Physiol. Entomol.,

 29: 45–55. 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

APPENDICES 

Appendix 1: Wide format choice data for MNL 

list hplant species exptype rep hfed_t parasitized_t 

 hplant   species   exptype   rep   hfed_t   parasi~t  

 ------------------------------------------------------ 

1. faba     huido         2     1        4         49  

2. faba     huido         2     2        3         61  

3. faba     huido         2     3        4         33  

4. faba     huido         2     4       13        107  

5. faba   sativae         2     1        8         30  

 ------------------------------------------------------ 

Appendix 2: Long format choice data for MNP 

list id possiblechoices choice hplant2 SPECIES  rep hfed_t parasitized_t in 1/6, sepby(id) 

+----------------------------------------------------------------------+ 

id   possib~s   choice   hplant2   SPECIES   rep   hfed_t   parasi~t  

---------------------------------------------------------------------- 

1.   1       faba        0      faba     huido     1        4         49  

2.   1     French        0      faba     huido     1        4         49  

3.   1     Tomato        1      faba     huido     1        4         49  

---------------------------------------------------------------------- 

4.   2       faba        0      faba     huido     2        3         61  

5.   2     French        0      faba     huido     2        3         61  

6.   2     Tomato        1      faba     huido     2        3         61  

+----------------------------------------------------------------------+ 
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Appendix 3: Selected interpretation of estimated coefficients 

Table 9: Multinomial logit model host feeding and parasitism estimates in odds ratios 

 MNL 
 Host fed Parasitized 
 Host Plant Host Plant 
P. vulgaris   
L. huidobrensis 0 0 
  (.)  (.) 
L. sativae 0 5.095*** 
  (.)  (0.810) 
L. trifolii 0 0.927 
  (.)  (0.218) 
S. lycospersicum   
L. huidobrensis 0 0 
 (.)  (.) 
L. sativae 1.409 2.287*** 
  (0.936)  (0.491) 
L. trifolii 117.33*** 7.367*** 
  (84.876)  (1.497) 
V. faba   
L. huidobrensis 0 0 
  (.)  (.) 
L. sativae 0.649 0 
  (0.209)  (.) 
L. trifolii 2.333 0 
  (1.260)  (.) 
N 345 1129 

Standard errors in parentheses  
* p < 0.05, ** p < 0.01, *** p < 0.001 

(.) Standard errors missing since variable is used as a reference variable 

 

Odds ratios interpretation for host feeding case  

The odds of parasitoid choice of L. sativae to L. huidobrensis in S. lycospersicum relative to 

P. vulgaris would be expected to increase by a factor of 1.409 (Table 8). There is however no 
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statistically significant evidence that parasitoids choosing S. lycospersicum relative to P. 

vulgaris were more likely to prefer host feeding on L. sativae to L. huidobrensis leaf miner 

larvae (z = 0.52, P = 0.606). 

The odds of parasitoid choice of L. sativae to L. huidobrensis in V. faba relative to P. vulgaris 

would be expected to increase by a factor of 0.649. There is however no statistically 

significant evidence that parasitoids choosing V. faba relative to P. vulgaris were less likely to 

prefer host feeding on L. sativae to L. huidobrensis leaf miner larvae (z = -1.34, P = 0.180). 

Odds ratios interpretation for parasitism case  

The odds of parasitoid choosing to parasitize L. sativae to L. huidobrensis in P. vulgaris 

relative to V. faba would be expected to increase by a factor of 5.095 (Table 8). There is 

statistically significant evidence that parasitoids choosing P. vulgaris relative to V. faba were 

more likely to prefer parasitizing L. sativae to L. huidobrensis leaf miner larvae (z = 10.24, P 

<0.0001). 

The odds of parasitoid choosing to parasitize L. trifolii to L. huidobrensis in S. lycospersicum 

relative to V. faba would be expected to increase by a factor of 7.367. There is statistically 

significant evidence that parasitoids choosing S. lycospersicum relative to V. faba were more 

likely to prefer parasitizing L. trifolii to L. huidobrensis leaf miner larvae (z = 9.83, P 

<0.0001). 
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Appendix 4: Selected Stata commands 

#Contingency table with host feeding counts, percentages, chi square test and Fisher’s 
exact test 

tabulate HPLANT SPECIES [fweight = hfed_t], chi2 col 

tabulate HPLANT SPECIES [fweight = hfed _t], exact col 

#MNL model for host feeding  

mlogit HPLANT i.SPECIES [fweight = hfed_t] 

#Fitting unrestricted MNP using for parasitism case 

asmprobit choice [fweight = parasitized_t], case(id) alternatives(possiblechoices) 
casevars(SPECIES)  

#Fitting homoskedastic MNP using for parasitism case 

asmprobit choice [fweight = parasitized_t], case(id) alternatives(possiblechoices) 
casevars(SPECIES) stddev(homoskedastic) 

#Goodness of Fit statistics for MNL and MNP models 

estat ic 

#Generating predicted probabilities 

predict prob 

#Calculating predictive accuracy for MNP homoskedastic model  

predict homoskedastic 

gen squares = (homoskedastic - choice)^2 

gen sumsquares = squares 

summarize sumsquares 

display r(sum) 

#Calculating predictive accuracy for MNL model  

gen faba = (SPECIES == 1) 

gen French = (SPECIES == 2) 
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gen Tomato = (SPECIES == 3) 

predict p1 p2 p3, pr 

gen squares1 = (p1 - faba)^2 

gen squares2 = (p2 - French)^2 

gen squares3 = (p3 - Tomato)^2 

gen sumsquares = squares1 + squares2 + squares3 

summarize sumsquares 

display r(sum) 

 


	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE
	INTRODUCTION
	1.1 Background Information
	1.2 Problem Statement and Justification
	1.3 Overall objective
	1.3.1 Specific objectives


	1.4 Study limitations
	The MNL and MNP model performance findings are limited to one insect choice dataset and generalizing the findings to different datasets may require simulation studies.
	CHAPTER TWO
	LITERATURE REVIEW
	Introduction
	In this chapter, design of statistically efficient choice experiments and random utility maximization framework are reviewed. Multinomial logit and multinomial probit models are reviewed in detail. The chapter ends with a review of studies that have c...
	2.1 Choice experiments
	Insect behavior has been studied by setting up choice experiments that evaluate insect response to different stimuli. Where insects are evaluated on how they respond to more than two stimuli, the data generated is multinomial in nature. Choice analysi...
	2.1.1 Efficient design of choice experiments

	Generating statistically efficient choice experimental designs is the least understood process in choice modelling as observed by Hensher et al. (2005). Design of choice experiments shares design principles with other experimental studies and generall...
	2.1.2 Random utility maximization framework

	Individuals choose an alternative that maximizes their utility from a choice set. Choice models are usually derived from the utility-maximization framework (Train, 2003; Kropko, 2010) and resulting models are known as random utility models. This rando...
	(2.1)
	where Uij represents overall utility for an alternative, Vij is the observed influences of utility and εij is the unobserved influences (error).
	The probability of an insect choosing alternative i over alternative j is equal to the probability that the utility of i being greater than (or equal to) the utility of j after evaluating all alternatives in a given choice set of j=1,…,i,…J alternativ...
	(2.2)
	The analyst’s equation is of the form,
	(2.3)
	Rearranging to reflect random utility maximization results in,
	(2.4)
	Different choice models arise in relation to the assumed error structure of above εij (Dow and Endersby, 2004).
	2.2 Modelling multinomial data
	Several methods exist for modelling multinomial data, ‘traditional’ methods of analyzing multinomial data include: analysis of frequency counts using chi-square test for contingency tables and log-linear models for contingency tables. This review focu...
	2.3 Multinomial regression
	2.3.1 Multinomial logit model
	2.3.1.1 Model assumptions
	2.3.1.2 Limitations of multinomial logit model

	2.3.2 Multinomial probit model
	2.3.2.1 Model assumptions
	2.3.2.2 Limitations of multinomial probit model


	MNP model’s increased flexibility involves the evaluation of high dimensional multivariate normal integrals for solving probabilities which increases time before reaching convergence and becomes challenging especially if probability is close to zero o...
	2.4 Comparative studies on MNL and MNP models

	CHAPTER THREE
	METHODOLOGY
	Introduction
	This chapter describes the data used in the study and how the data was managed. Summary statistics, exploratory plots, MNL and MNP models are also described. The chapter ends by detailing predictive accuracy and goodness of fit methods used in the ana...
	3.1 Data Description
	Secondary data used in this study came from a laboratory experiment conducted by Musundire et al. (2012) where parasitoids Diglyphus isaea (Walker) (Hymenoptera: Eulophidae) were allowed to either parasitise or host feed on larva of leaf miner flies r...
	The aim of the study was to investigate whether leaf miner species influenced parasitoids choice of either host feeding or parasitizing leaf miner larva.
	3.1.1 Experimental design

	Four potted leaf miner host plants P. vulgaris, P. sativum, S. lycospersicum and V. faba were each infested with live late second to third instar larvae of Liriomyza species and placed in ventilated Perspex cages (50 × 50 × 45 cm).  P. vulgaris, P. sa...
	3 generations before conducting the experiment, the 3 Liriomyza species were reared on each of the 4 host plants,to avoid bias resulting from rearing leaf miner on only one host plant. The Liriomyza were reared at a temperature of 27 ± 0.60C, relative...
	50 male and female (sex ratio 1:1) adult Liriomyza aged 4 days were released to infest 16potted plants of each of the 4 host plant species placed in ventilated cages. The adult Liriomyza were given a 4 hour oviposition period after which infested host...
	45 pre-mated D. isaea were then released per cage for 48 hours on leaf miner larvae infested host plants where they were allowed to mate and given a preoviposition period of 12 hours. Larvae were recorded as host fed once they became flaccid with blac...
	The response variable was number of parasitoids (counts) that parasitized or host fed leaf miner larva on a given host plant and explanatory variable was leaf miner species.
	3.1.2 Data management

	Before fitting the MNL model, data was organized in wide format with one row providing data for each choice situation for an individual parasitoid (Appendix 1).
	For the MNP the data was organized in long format with one row for each alternative made by an individual parasitoid and since there were 3 host plant alternatives, the dataset had 3 rows for each choice made by parasitoids (Appendix 2).
	Due to the small numbers of leaf miner larvae in P. sativum attributed to difficulties in rearing L.sativae and L. trifolii larva in P. sativum, P. sativum was excluded in the analysis both for host feeding and parasitism to ensure convergence (Agrest...
	3.2 Data Analysis
	3.2.1 Summary statistics


	The data was summarized using a contingency table and association tested between host plants and leaf miner species using chi square test for contingency tables. Fishers’ exact test was used to analyze the association where fewer than 20% of cells in ...
	Two exploratory box plots were also used to show visualize patterns and check for outliers.
	Box plot of total parasitoids that chose different host plants
	Box plot of parasitoids that chose different host plants including leaf miner species
	3.2.2 Models
	Nominal multinomial logit and multinomial probit models were fitted on the data.
	3.2.2.1 Multinomial logit model

	Two MNL models were fitted on the data one for host feeding and the other for parasitism cases.
	The MNL model log odds equation was of the form,
	where,
	Pj = probability of choosing the jth host plant
	β0= constant term
	β1= leaf miner species parameter estimate
	X= leaf miner species
	εj = error terms
	j = 1,…,3 host plant alternatives
	Counts of parasitoids that host fed and parasitized leaf miner larvae were used as frequency weights for each host plant choice.
	MNL models were fitted using default Stata settings and parameters estimated via maximum likelihood (MLE) implemented by the Newton-Raphson algorithm.
	Testing IIA assumption
	Hausman-McFadden test was used in testing IIA assumption for MNL model (Hausman and McFadden, 1984).
	3.2.2.2 Multinomial probit model
	Two MNP models estimated via maximum simulated likelihood (MSL) were fitted on the data for host feeding and parasitism cases. The simulation was implemented by the Geweke-Hajivassilou-Keane (GHK) simulator and optimization was via the Stata default B...
	The response variable was also host plant while explanatory case-specific (does not vary with choices) variable was leaf miner fly species.
	where,
	Pj = probability of choosing the jth host plant
	β0= constant term
	β1 = leaf miner species parameter estimate
	X = leaf miner species
	εj = error terms
	j = 1,…,3 host plant alternatives
	Counts of parasitoids that host fed and parasitized leaf miner larvae were used as frequency weights for each host plant choice.
	Two restrictions were imposed on the variance error structure of the MNP models:
	Heteroskedastic variance error structure (default Stata setting) which accommodated correlated error terms which had different variance for each choice error.
	Homoskedastic variance error structure which forced the diagonal elements in the variance-covariance matrix to be 1. This restriction accommodated correlated errors only.
	Both models allowed an unstructured correlation error structure which relaxed the IIA assumption.
	Base Categories
	P. vulgaris was used as the Stata default base category for host feeding case since it had the highest frequency counts while V. faba was used for parasitism case respectively.
	3.3 Predictive accuracy evaluation
	The predictive accuracy of predicted probabilities from MNL, homoskedastic MNP and unrestricted MNP models was evaluated using the sum of squared deviations (Maddala, 1983). The observed choice probabilities were generated in 0 and 1 binary format for...
	3.4 Goodness of fit evaluation
	3.4.3 Ease of convergence

	CHAPTER FOUR
	RESULTS AND DISCUSSION
	Introduction
	In this chapter, summary statistics and exploratory plots are presented first. Predictive accuracy and goodness of fit results for MNL and MNP models are also presented. The chapter ends with a detailed discussion of the results.
	4.0 RESULTS
	4.1 Summary statistics
	4.2 Predictive accuracy
	4.2.1 Predicted probabilities

	4.3 Goodness of fit
	4.4 DISCUSSION
	4.4.1 Summary statistics

	The chi-square test for contingency tables explains that there is a highly significant association (P <0.0001) between host plants and leaf miner flies larvae for both parasitism and host feeding cases respectively (Tables 1 and 3). However, because 4...
	The chi square test has potential use in insect choice studies during data exploration since the test gives an indication of patterns in the data as observed in Stout et al. (2010) who used the test in testing association between female cricket behavi...
	4.4.2 Predictive accuracy
	MNP model has a higher predictive accuracy than MNL (Table 5). This finding can be explained by the presence of slight correlation in choices that is observed in host feeding and parasitism from Hausman--McFadden test. Correlation presence enables the...
	Marginal differences in predictive accuracy are observed in MNP models with unrestricted and homoskedastic error structures for both host feeding and parasitism cases (Table 5). The heteroskedastic restriction on the covariance matrix seems to capture...
	The qualitatively similar predicted probabilities observed for both MNL and MNP models (Table 6 and 7) agree with Dow and Endersby (2004) who found that MNL and MNP models resulted in almost similar probabilities even in cases where choice correlation...
	Comparing parameter estimates from MNL and MNP without accounting for differences in scaling between the two models may lead to overestimating and underestimating effects. MNL reports coefficients that are about 1.6 times larger than for MNP coefficie...
	4.4.3 Goodness of Fit
	Multinomial logit fits the data better than MNP from the lower BIC statistic values for MNL model for both host feeding and parasitism cases (Table 9). MNL is observed to have a better fit to the data than both variations of MNP despite the presence o...
	The AIC statistic for the parasitism case indicates that the unrestricted MNP has a marginally better fit than MNL and homoskedastic MNP models respectively. BIC penalizes the unrestricted MNP because of additional parameters estimated in the covarian...
	Imposing homoskedastic restriction on MNP model does not seem to improve fit for homoskedastic MNP as observed from both AIC and BIC statistics (Table 9) for parasitism and host feeding case. Though the MNL seems to fit the data better, the unrestrict...
	Restrictions on MNP covariance matrix reduce computational burden. The number of iterations before convergence are lower for homoskedastic MNP than unrestricted MNP for both host feeding and parasitism cases (Table 9). The reduced computational burden...

	CHAPTER FIVE
	CONCLUSION AND RECOMMENDATIONS
	Introduction
	This chapter presents conclusions based on the study objectives followed by recommendations and future directions.
	5.1 Conclusion
	MNL had a better fit to the data than MNP despite violation of the IIA assumption. There was little evidence that imposing restrictions on the MNP covariance matrix improved predictive accuracy and goodness of fit though the homoskedastic restriction ...
	5.2 Recommendations

	REFERENCES
	Richard, I. and Davison, A. C. (2007). Statistical inference for olfactometer data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 56(4): 479-492.
	APPENDICES

