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Spatial variation of soil organic carbon under the linear simultaneous
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Most research on spatial variability of soil organic carbon (SOC)
has been conducted in forest and grassland soils, but no research
has been conducted on agroforestry soils. Knowledge about
the variability of SOC can assist in generating effective sampling
designs and can help to scale-up carbon inventories. The aim
of this study was to investigate the spatial variation of SOC
concentrations in linear simultaneous agroforestry systems and
recommend a suitable sampling design. The study was
conducted at Kifu National Forestry Resources Research
Institute (NaFORRI) in Mukono district, Central Uganda. The
study was conducted within an existing experiment, established
in 1995 as a randomised complete block design with a multi-
factor factorial treatment structure. Soil samples were collected
at three depths; 0-25 cm, 25-50 cm, and 50-100 cm, twice;
before clearing the site and planting the maize crop and after
harvesting. Geostatistical tools were used to describe and
predict spatial variation using semi-variograms, and to conduct
spatial interpolation. Results indicate that spatial dependencies
among neighbouring locations exist at all soil depths. However,
results indicate a short distance of spatial continuity of SOC,
varying from 3.4 to 13.8 m. Knowledge of spatial arrangement
can be used to form strata and hence stratified random sampling
design is recommended to be used in future data collection
procedures. In order to improve the precision of the estimated
SOC, a distance of less than 6.9 m between sampling points
would be appropriate to capture the spatial autocorrelation in
the linear simultaneous or similar agroforestry system.

Key words:  Agroforestry, carbon inventories, semi-variograms,
soil organic carbon, spatial variation

La plupart de recherches sur la variabilité spatiale du carbone
organique du sol (COS) ont été menées dans le sol des forêts
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et celui des prairies, mais aucune recherche n’a été menée sur
les sols de l’agroforesterie. La connaissance de la variabilité du
COS peut aider à générer des plans efficaces d’échantillonnage
et aider à échelonner les stocks de carbone. Le but de cette
étude est d’examiner la variation spatiale des concentrations
en COS dans les systèmes agroforestiers simultanés linéaires
et de recommander un plan d’échantillonnage approprié. L’étude
a été menée à l’Institut National de Recherche en Ressources
Forestières de Kifu (NaFORRI) dans le district de Mukono, en
Ouganda central. L’étude a été menée dans une expérience
existante, créée en 1995 comme un dispositif en blocs aléatoires
complets avec une structure multi-factorielle de traitement
factoriel. Des échantillons de sol ont été prélevés à trois
profondeurs; 0-25 cm, 25-50 cm et 50-100 cm, deux fois : avant
de nettoyer le site et de planter le maïs, et après la récolte. Des
outils géostatistiques ont été utilisés pour décrire et prévoir la
variation spatiale à l’aide de semi-variogrammes, et de procéder
à une interpolation spatiale. Les résultats indiquent que les
dépendances spatiales entre les emplacements voisins existent
à toutes les profondeurs du sol. Cependant, les résultats
indiquent une courte distance de la continuité spatiale du COS,
variant de 3,4 à 13,8 m. La connaissance de l’arrangement
spatial peut être utilisée pour former les strates et ainsi, le plan
d’échantillonnage aléatoire stratifié est recommandé pour être
utilisé dans les futures procédures de collecte des données.  Afin
d’améliorer la précision du COS estimé, une distance de moins
de 6,9  †m entre les points de prélèvement serait appropriée
pour reproduire l’auto-corrélation spatiale dans le système
agroforestier simultané linéaire ou dans le système analogue.

Mots clés: Agroforesterie, stocks de carbone, semi-
variogrammes, carbone organique du sol, variation spatiale

Soil organic carbon (SOC) levels are known to be influenced
by a large number of factors, many of which are mutually
interactive. These include: parent material, soil texture, climate,
soil pH, topography, drainage, vegetation, land use and
management. Manipulation of some of these factors, especially
management-related ones, may be used to increase carbon (C)
sequestration in soils and thus mitigate national climate change
commitments (Smith et al., 2000). Statistical and geostatistical
procedures have been used to study the relationships between
SOC and these factors, and to quantify spatial distribution
patterns and changes in SOC (Frogbrook and Oliver, 2001).
Soil characteristics tend to be correlated over space, both



747

Third  RUFORUM Biennial Meeting  24 - 28  September 2012, Entebbe, Uganda

vertically and horizontally, and when such heterogeneity and
interactions occur, it is necessary to describe spatial structures
and scale (Bartoli et al., 1995).

Understanding the distribution of soil properties in the field is
important in refining agricultural management practices
(McBratney and Pringle, 1999) while minimising environmental
damage. Soil property variation within a field often has been
described by classical statistical methods assuming a random
distribution (Goovaerts, 1999; Webster, 2001; Conant and
Paustian, 2002). In many instances, spatial variation is not
random and tends to increase as distances increases between
points in space. Spatial dependence has been observed for a
wide range of soil physical and biological properties (Goovaerts,
1998), but typically the size of the studied area is relatively
small, commonly ranging from 1 m2 to 1 ha. Geostatistical
techniques that provide the means to characterise and quantify
spatial variation have been used to process this information for
rational interpolation, and to estimate the variance of interpolated
values (Isaaks and Srivastava, 1989; Webster and Oliver, 2001).

There is a need to obtain reliable information on the variation
of soil properties within fields so that management decisions
can be made effectively. However, a major difficulty in the
progress of site–specific management at present is to obtain
enough information about soil properties to produce reliable
estimates for mapping. Kerry and Oliver (2007) noted that a
common approach to agricultural sampling is one sample per
hectare, which even for a large field of 50 ha would not provide
an adequate sample size to compute an accurate variogram.
More still, this method does not account for the spatial scale of
variation present in the study site. Therefore, a number of
sampling issues still need to be addressed, such as suitable
sample size, how the sampling points should be distributed over
the site of interest and how different degrees of spatial variation
affect the data requirements (Kerry and Oliver, 2007).

Most research on spatial variability of soil organic carbon (SOC)
has been conducted in forest (Oliver et al., 2004; Schoning et
al., 2006) and grassland soils (Conant and Paustian, 2002;
McGrath and Zhang, 2003; Zhang and McGrath, 2004; Don et
al., 2007) but no research has been conducted on agroforestry
soils. Knowledge about the variability of SOC can assist in
generating effective sampling designs and can help to scale-up
carbon inventories (Don et al., 2007). Therefore, the aim of
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this study was to investigate the spatial variation of SOC
concentrations in linear simultaneous agroforestry systems and
recommend a suitable sampling design.

The study was conducted at Kifu National Forestry Resources
Research Institute (NaFORRI) in Mukono district in Central
Uganda. The field work was conducted within an existing
experiment, established in 1995 as a randomised complete block
design with a multi-factor factorial treatment structure(Okorio,
2000; Wajja-Musukwe, 2003). Soil samples were collected at
three depths; 0-25 cm, 25-50 cm, and 50-100 cm, twice; before
clearing the site and planting the maize crop and after harvesting.
The vegetation is characterised by elephant grass (Pennisetum
purpureum) and remnants of high tropical forest and eucalyptus
woodlots (Okorio, 2000). Swamps are covered by papyrus reeds
(Cypresus papyrus) and sedges are found in several valley
bottoms. Kifu is set in the crystalline basement characterised
by metamorphosed granites and soils originating from quaternary
alluvial and lacustrine deposits (Water Department, 1996). The
FAO/UNESCO soil map classifies the soils as mainly Ferralsols,
with Gleysols in the swamps and a small area of Intosols. The
soils are slightly acidic sandy loams with bulk densities in the
range of 1.5 to 1.7 Mg m-3

 (Okorio, 2000).

Geostatistics procedures require a variable to have a continuous
surface. The data from linear simultaneous agroforestry system
have a step function due to the species differences. To obtain a
continuous surface for linear simultaneous agroforestry system
data, the species effect was removed. In order to remove the
confounding effect of species, the soil organic carbon data used
in the analysis were adjusted by obtaining residuals from
complete randomised design and adding the grand mean to the
residuals to obtain a new variable of soil organic carbon without
the species effect. Spatial variability of SOC was analysed by
use of geostatistical tools, namely semi-variogram, correlogram,
madogram and kriging (Schöning et al., 2006). SOC was
adjusted for species effect and analysed by simple random
sampling (SRS), stratified random sampling (STS), trend analysis
(TRE), and kriging (KMRE). Mean and total SOC with the
corresponding variance and standard error were computed for
each estimator. The magnitude of the standard error and
variance of the mean SOC and total SOC were used to assess
the precision of these procedures.
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The variograms indicate that the semi-variance is increasing
with increasing separation distance and then stabilises.  These
results demonstrate that SOC is spatially auto-correlated.
Variogram analysis indicate that the range at which SOC is not
spatially autocorrelated before planting maize is 72.6 m, 3.4 m
and 24.8 m for soil depths of 0-25 cm, 25-50 cm and 50-100
cm, respectively. This indicates that SOC is spatially auto-
correlated at wide distances for soil depth 0-25 cm and 50-100
cm as compared to 25-50 cm. After planting maize crop, SOC
was still spatially auto-correlated, however the range at which
correlation existed changed. The range for SOC changed from
13.8 m to 9.8 m to 5.3 m for soil depths 0-25 cm, 25-50 cm and
50-100 cm, respectively This result indicates that the range at
which SOC is spatially auto-correlated reduces with depth after
planting the maize crop.

Block kriging was used to predict SOC at unsampled locations,
and 2D and 3D kriging maps of the predicted SOC were
constructed for the whole study area. Figure 1 shows that high
SOC is found in the plots in the south west and North West for
soil depth 0-25 cm. The values of SOC in these plots range
from 23.3 to 24.4 g C kg-1. The plots found in the north east
and south east had lower SOC ranging from 19.1 to 21.1 g C
kg-1. There is a north-east and south-west diagonal band of
SOC (Fig. 1). Figure1 further indicates that lower values of
SOC (16.6-20.1 g C kg-1) were found in plots in the north-east
and north-west while  higher values  of  SOC (20.1-22.4 g C
kg-1) were found in south-west and south-east at soil depth 25-
50 cm. At soil depth 50-100 cm, low values of SOC ranging
from 13.8-16.5 g C kg-1 covered the whole study site with spots
of high SOC and low SOC values scattered throughout the
study site (Fig. 1).

After planting maize crop, the north-east and south-west
diagonal trend of SOC  still existed, high values of SOC (22.9-
26.0 g C kg-1) were found in the plots in the north west (Figure
2), while low values of SOC (18.2-21.3 g C kg-1)  were found
in the north east plots. The remainder of the study site at 0-25
cm soil depth had a mixture of high and low SOC values. Figure
2 shows that plots in the south-west had high values of SOC
(19.5-21.5 g C kg-1) and low SOC  values were found in the
north-west and north-east at soil depth 25-50 cm. The rest of
the area had a mixture of low and high values of SOC. For 50-
100 cm soil depth (Fig. 2), much of the area had SOC ranging
from 14.9-16.3 g C kg-1 and some plots in the north-east had
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Figure 1.    Kriging map of soil organic carbon (before planting maize) at soil depths of (a) 0-25 cm, (b)
25-50 cm, and (c) 50-100 cm.
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Figure 2.     Kriging of soil organic carbon after harvesting maize at soil depths of (a) 0-25 cm, (b) 25-50
cm, and (c) 50-100 cm.

A

  B

 C



Balaba Tumwebaze, S. et al.

752

Conclusion

References

SOC values of 16-3 - 17.7 g C kg-1, with spots of higher SOC
values.
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(simple random sampling (SRS), stratified random sampling
(STS), trend analysis regression estimator (TRE) and kriging
like model-based regression estimator (KMRE). Accounting
for spatial variation by blocking (STS) improves the precision
of the mean SOC estimate by 12.7% for 0-25 cm soil depth
compared to SRS.
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locations of the study site for each depth and both data sets
(before and after planting maize). There was no anisotropic
pattern in SOC indicating no obvious differences in the spatial
structure in all direction. Stratified random sampling was chosen
as a suitable method for collecting data in future studies in linear
simultaneous or similar agroforestry system, since the method
incorporates the existing spatial arrangement in the design.
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