Research Application Summary

Food type preference, breeding seasonality and size at first maturity of Synodontis njassae of southeast arm of Lake Malawi

Kamtambe, K.M.¹, Kaunda, E.W.¹, Msukwa, A.¹ & Maguza-Tembo, F.¹ ¹Aquaculture and Fisheries Science Department, Faculty of Environmental Sciences, Bunda College of Agriculture, P. O. Box 219, Lilongwe, Malawi **Corresponding author:** kingskamtambe&@gmail.com

Abstract	The food type preferencein the southeast arm of Lake Malawi was studied. Frequency of occurrence, gravimetric, volumetric and index of relative importance was used to assess food preference. It was found that <i>S. njassae</i> is an omnivore, consuming a range of aquatic insects, detritus, phytoplankton's and other fish. Therefore, this species may accept a wide range of formulated diets that contains ingredients derived from plants, aquatic macro-invertebrates or animals. This makes the culturing of this species in captivity potentially possible. Key words: Bottom feeders, cage farming, detrivores, fish, omnivorous fish
Résumé	La préférence de type d'aliment dans le bras Sud-Est du lac Malawi a été étudiée. La fréquence de l'événement, gravimétrique, volumétrique et l'indice de l'importance relative ont été utilisés pour évaluer la préférence alimentaire. Il a été constaté que <i>S. njassaeis</i> un omnivore, consomme une variété d'insectes aquatiques, des détritus, du phytoplancton et d'autres poissons. Par conséquent, cette espèce peut accepter un large éventail de régimes alimentaires formulés qui contient des ingrédients dérivés de plantes, de macro-invertébrés aquatiques ou d'animaux. Cela rend la mise en culture de cette espèce en captivité potentiellement possible.
	Mots clés: Poissons nourrisseurs de fond, elevage en cage, detrivores, poisson, poisson omnivore
Background	Synodontis njassae is one of the 131 species in the Synodontis genera, the most widely distributed genus of the Mochokid family. It is endemic to Malawi. Like most Synodotis species, S.njassae is a prized ornamental fish because of the bright coloration and general body shape. It is also considered as a delicacy in the diet of riparian communities (Meye et al., 2008). There is conflicting data on the breeding season, natural feeding

Kamtambe, K.M. et al.		
	habits and food preference of this species. This paper answers what this fish's natural food items are and their corresponding importance. This information will be useful for designing approaches for breeding this species in captivity.	
Literature Summary	Most <i>Synodontis</i> species are omnivorous, largely feeding on a wide spectrum of different foods. Some are bottom-feeders and may be detrivores while other species exhibit an adaptation to filter feeding (Lalèyè <i>et al.</i> , 2006). Species of Synodontis genus are thought to reproduce during the flooding period of the rainy season (Lalèyè <i>et al.</i> , 2006). Histological criteria from ovary samples can be used to classify the maturity stage of fish based on characteristics and classification systems described by Schaefer (1996).	
Study Description	A total of 472 fish sample were collected on board the Ndunduma fisheries research vessel over a period of twelve months in the southeast arm of Lake Malawi. Fish gut and gonads were removed using a surgical kit. The stomach contents were analysed according to methods described by Hyslop (1980). The type of food material found in the gut were separated in different categories and quantified. The Index of Relative Importance (IRI) of a particular food item was estimated using a formula IRI = (% N + % V) × % F, where <i>N</i> is percentage by number of a specific food item, <i>V</i> is the volume of the specific food item and <i>F</i> is frequency of occurrence (Hyslop, 1980).	

Table1. Gut contents and their corresponding frequency of occurrence in the guts of *Synodontis njassae* captured from lake Malawi.

Type of food item	Frequency of occurrence method		Numerical method	
	No. of occurrence	% of occurrence	Number	%
Nematodes	213	39.34426	825	7.798469
Scales	264	48.36066	1876	17.73325
E.sardella	125	23.77049	138	1.304471
Detritus	213	38.93443	585	5.529823
Water beetle	191	36.88525	343	3.242272
Water bugs	229	43.03279	364	3.440779
Water fly	247	46.51639	523	4.943756
Bivalves	388	72.13115	1816	17.16608
Insect larvae	135	26.63934	167	1.578599
Flagellates	124	23.97541	125	1.181586
M. tuberculata	274	48.77049	2453	23.18745
L. solidus	94	13.52459	316	2.98705
Tissue	297	55.7377	1048	9.906418

Research Application	The study has shown that <i>S. njassae</i> is an omnivore (Table 1). Thus, this fish may accept a wide range of formulated diets that contains ingredients derived from plants, aquatic macro- invertebrates or animals.
Acknowledgement	This study was funded by the NEPAD-Sanbio Fish Node under Biofisa project. Many colleagues provided technical assistance where necessary including Mr. E. Nyali from Bunda College of Agriculture.
References	 Hyslop, E.J. 1980. Stomach contents analysis- a review of methods and thier application. J. of Fish Biol., 17:411-429. King, M. 1995. Fisheries Biology, Assessment and Management. Fishing News Books. Oxford, U.K. Rev Fish Biology 18:151-352. King, R.P. and Etim, L. 2003. Reproduction, growth, mortality and yield of <i>Tilapia mariae</i> Boulenger, 1899 (Cichlidae) in a Nigerian rainforest wetland stream. Journal of Applied Ichthyology 20:502-510. Laleye, P.A., Chikou, P., Vandewalle, J.C., Philippart, N. and Tuugels, G 2006. Studies on biology of two species of catfish: Synodontis schall and Synodontis nigrita (Ostarriophysii: Mochokidae) from Oueme River, Benin. Belg. J. Zool., 136(2):193 - 201 Limuwa, M. 2008. Determination of age and growth of Opsaridium microlepis (Mpasa) and the influence of water quality parameters on its catches in the Linthipe river in Central Malawi. MSc. Thesis, Bunda College, University of Malawi, Malawi. Meye, J.A., Omoruwou, P.E and Mayor, E.D. 2008. Food and feeding habits of Syndontis Ocellifer (Boulenger, 1900) from river Adofi, Southern Nigeria. Tropical Freshwater Biology 17: 1 - 12. Schaefer, K.M. 1996. Spawning time, frequency, and batch fecundity of yellow fin tuna, Thunnus albacares, near Clipperton Atoll in the eastern Pacific Ocean. Fish. Bull. 94:98-112.

Third RUFORUM Biennial Meeting 24 - 28 September 2012, Entebbe, Uganda